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accuracy  than  the short-time  analytical  solution.  This  approximate  solution  can  also  be  used as  the  porous
electrode  model.
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igenfunction

. Introduction

Physics-based models are widely used to predict the behav-
or of lithium ion cells and batteries [1].  In a typical cell model,
ach porous electrode is described by a pseudo two-dimensional
omain with solid-phase diffusion occurring in spherical particles,
or example, at each local position in a porous electrode (see Fig. 1 of
ef. [1]). This solid state diffusion occurs because lithium ions are

ntercalated or deintercalated through electrochemical reactions
t the surface of the solid phase particles [2,3]. For this reason, the
oncentration of lithium ions at the particle surface is an impor-
ant variable which is needed in the simulation to determine the
eaction rate, for example.

Several numerical methods have been used to solve the solid-
hase diffusion equation in the r dimension of spherical particles
the pseudo second dimension) and obtain the surface concen-
ration of lithium ions. For example, the finite difference (FD) [4]
nd orthogonal collocation on finite elements (OCFE) [5,6] meth-
ds have been used. These methods require discretization of the
article radius into node points or elements with interior points;
nd, consequently, one or more ordinary differential equations
ODEs) are obtained at each point or element (this method is often

alled the method of lines). However, the computational error
aused by the discretization of a continuous domain increases dra-
atically if there are large concentration gradients at the surface

∗ Corresponding author. Tel.: +1 11 803 777 3270; fax: +1 11 803 777 0973.
E-mail address: white@cec.sc.edu (R.E. White).

378-7753/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.08.096
of the particles. If too many node points or elements are applied to
reduce the error in discretization, the simulation is severely slowed
due to the large number of equations.

The analytic solution to the spherical diffusion equation includes
an infinite series. To evaluate this infinite series, the series is
approximated by truncating. The truncated series includes a finite
number of terms. Evaluation of these terms requires significant
computation time for cases with large concentration gradients at
the surfaces of the particles, which can occur during pulsing for
example.

An approximate analytic solution is presented in this paper
to minimize the truncation error associated with implementation
of the series with a finite number of terms included in the ana-
lytic solution. It is shown that only a few terms are needed in the
approximate solution together with an additional term compen-
sating for the truncation error. The resulting approximate solution
yields accurate results with less computation time than required
for numerical methods or a large number of terms in the analytic
solution.

2. Model development

The diffusion of lithium ions in a spherical solid phase particle
follows Fick’s law and is described by the following partial differ-
ential equation (PDE) in the spherical coordinates:( )

∂c

∂t
= D

1
r2

∂

∂r
r2 ∂c

∂r
(1)

at t = 0 for 0 ≤ r ≤ R c(t = 0) = c0 (2)

dx.doi.org/10.1016/j.jpowsour.2011.08.096
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:white@cec.sc.edu
dx.doi.org/10.1016/j.jpowsour.2011.08.096
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Nomenclature

List of symbols
c  concentration of lithium ions in the solid particles

(mol m−3)
cmax maximum concentration in particle (mol m−3)
C dimensionless concentration of lithium ions
Cs dimensionless concentration of lithium ions at par-

ticle surface
C dimensionless average concentration of lithium

ions
D solid phase diffusion coefficient for lithium ions in

the particles (m2 s−1)
eN truncation error
j(t) molar flux of lithium at the particle surface

(mol m−2 s−1)
n index of eigenvalues and eigenfunctions
N number of eigenfunctions kept in the series
Qn eigenfunction
Q apx

n approximated eigenfunction
r radial coordinate (m)
R particle radius (m)
r̄ dimensionless radial coordinate
t time (s)
ı(�) dimensionless molar flux of lithium ions at the par-

ticle surface in the r̄ direction

w
s
t
A
s
f

C

�

ı

r

w
T
t

C

�n eigenvalue
� dimensionless time

∂c

∂r

∣∣∣∣
r=0

= 0 (3)

−D
∂c

∂r

∣∣∣∣
r=R

= j(t) (4)

here c is concentration of lithium in the solid particles, D is the
olid phase diffusion coefficient for lithium in the particles, j(t) is
he time dependent boundary flux, and R is the radius of particle.
ssuming that the diffusivity D and the particle radius R are con-
tants, these model equations can be rewritten in the dimensionless
orm by choosing the following dimensionless variables:

 = c

cmax
(5)

 = Dt

R2
(6)

(�) = j(t)R
D(t)cmax

(7)

¯ = r

R
(8)

here cmax is the maximum lithium concentration in the particle.
he dimensional equations (1) through (4) can be converted into
he following dimensionless equations by using Eqs. (5)–(8)

∂C

∂�
= 1

r̄2

∂

∂r̄

(
r̄2 ∂C

∂r̄

)
(9)

(� = 0) = C0 (10)

∂C
∣∣∣∣ = 0 (11)
∂r̄
r̄=0

∂C

∂r̄

∣∣∣∣
r̄=1

= −ı(�) (12)
 Sources 198 (2012) 322– 328 323

The analytic solution to these equations is [7]

C(r̄, �) = C0 + 3
10

ı(�) − ı(�)
2

r̄2

− 3

∫ �

0

ı(� ′) d� ′ + 2
∞∑

n=1

sin(�nr̄)

r̄�2
n sin(�n)

ı(�)

− 2
∞∑

n=1

sin(�nr̄)
r̄ sin(�n)

e−�2
n�

∫ �

0

ı(� ′) e�2
n�′

d� ′ (13)

The last two  terms in Eq. (13) can be combined by letting

Qn(�) = −2 e−�2
n�

∫ �

0

ı(� ′)e�2
n�′

d� ′ (14)

Eq. (13) then becomes

C (r̄,  �) = C0 + 3
10

ı (�) − ı(�)
2

r̄2 − 3

∫ �

0

ı(� ′) d� ′

+
∞∑

n=1

sin(�nr̄)
r̄ sin(�n)

[
Qn(�) + 2ı(�)

�2
n

]
(15)

Eq. (14) can be written as a differential equation by taking the
derivative of each side of Eq. (14) with respect to �:

dQn

d�
= −�2

nQn(�) − 2ı(�) for n = 1 to ∞ (16)

with

Qn(� = 0) = 0 for n = 1 to ∞ (17)

where �n is the nth eigenvalue calculated from the following equa-
tion

�n − tan �n = 0 n = 1, 2, · · · (18)

Note that when ı(�) is a constant, Eq. (16) yields

Qn(�) = − 2ı

�2
n

[1 − exp(−�2
n�)] (19)

at the surface of the particle

Cs(�) = C(r̄ = 1, �) (20)

Eq. (15) can be used to write the dimensionless surface con-
centration, Cs(�), in terms of the average concentration and the
eigenfunction, Qn:

Cs(�) = C(�) +
∞∑

n=1

Qn(�) (21)

where C(�) = 3
∫ 1

0
r̄2C(r̄, �) dr̄ is the average concentration and is

determined by

dC

d�
= −3ı(�) C̄(� = 0) = C0 (22)

Eq. (21) presents the theoretical form for the complete solution
for Cs(�) if an infinite number of terms are included in the series.
However, to calculate a value for the surface concentration, one
normally retains N terms in the series by using a truncated solution:
Ctrun
s (�) = C(�) +

N∑
n=1

Qn(�) + eN(�) (23)
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here the truncation error, eN(�), between the truncated solution
iven in Eq. (23) and the complete solution given in Eq. (21) is given
y

N(�) =
∞∑

n=N+1

Qn(�) (24)

ow, let’s develop an approximation for this truncation error. To
o so, let’s find an approximate eigenfunction Q apx

n . That is, let

apx
n = −2ı(�)

�2
n

[1 − exp(−�2
n�)] (25)

note that this is the eigenfunction for a constant ı given in Eq. (19)).
ext, take the derivative of both sides of Eq. (25) with respect to �

o obtain the following equation

dQ apx
n

d�
= −�2

nQ apx
n − 2ı(�) − 2

�2
n

dı(�)
d�

[1

− exp(−�2
n�)] with Q apx

n

∣∣
�=0

= 0 (26)

or large values of n, the nth eigenvalue �n will be large enough to
atisfy the relationship

ı(�) � 2

�2
n

dı(�)
d�

[1 − exp(−�2
n�)] (27)

nd Eq. (26) can be simplified to

dQ apx
n

d�
≈ −�2

nQ apx
n − 2ı(�) (28)

ext, let the approximate truncation error be

apx
N (�) =

∞∑
n=N+1

Q apx
n (�) (29)

here N is large enough to insure that Eq. (27) is valid. Since Q apx
n

s a function of n, the summation
∑∞

n=N+1Q apx
n can be converted

pproximately to the integration of Q apx
n with n:

∞∑
=N+1

Q apx
n =

∫ ∞

N+1

Q apx
n dn (30)

or large n, it is known that

n ≈
(

1
2

+ n
)

� (31)

onsequently,

�n ∼= � dn (32)

ubstitution of Eqs. (25) and (32) into Eq. (30) yields

∞∑
=N+1

Q apx
n = − 1

�

∫ ∞

�N+1

2ı(�)

�2
n

[1 − exp(−�2
n�)] d�n (33)

he right hand side of Eq. (33) can be integrated analytically to
btain:

− 1
�

∫ ∞

�N+1

2ı(�)

�2
n

[1 − exp(−�2
n�)] d�n

= −2ı(�)

[
1 − exp(−�2

N+1�)

��N+1
+
√

�

�
erfc(�N+1

√
�)

]
(34)
ince

1
��N+1

= 1
�

∫ ∞

�N+1

1

�2
n

d�n ≈
∞∑

n=N+1

1

�2
n

(35)
 Sources 198 (2012) 322– 328

substitute Eq. (35) into (34) and to obtain

− 1
�

∫ ∞

�N+1

2ı(�)

�2
n

[1 − exp(−�2
n�)] d�n = −2ı(�)

{( ∞∑
n=N+1

1

�2
n

)
[1

− exp(−�2
N+1�)] +

√
�

�
erfc(�N+1

√
�)

}
(36)

The derivation from Eqs. (34) to (36) effectively removes the
error generated from converting addition to integration (Eq. (30))
because Eq. (36) satisfies the long-time accuracy. That is, as �→ ∞,
exp(−�2

n�) → 0, and according to Eq. (25),

Q apx
n = −2ı(�)

�2
n

as � → ∞ (37)

therefore
∞∑

n=N+1

Q apx
n = −2ı(�)

∞∑
n=N+1

1

�2
n

as � → ∞ (38)

Also as �→ ∞,
√

(�/�) erfc(�N+1
√

�) → 0, and the right-hand-side
of Eq. (36) becomes

−2ı(�)

{( ∞∑
n=N+1

1

�2
n

)
[1 − exp(−�2

N+1�)] +
√

�

�
erfc(�N+1

√
�)

}

= −2ı(�)
∞∑

n=N+1

1

�2
n

(39)

Comparing Eq. (38) and (39), we  obtain that the following approx-
imation

∞∑
n=N+1

Q apx
n ≈ −2ı(�)

{( ∞∑
n=N+1

1

�2
n

)
[1 − exp(−�2

N+1�)]

+
√

�

�
erfc(�N+1

√
�)

}
as � → ∞ (40)

which has good accuracy for �→ ∞.
Since

∞∑
n=1

1

�2
n

= 1
10

(41)

we  can write

∞∑
n=N+1

1

�2
n

=
∞∑

n=1

1

�2
n

−
N∑

n=1

1

�2
n

= 1
10

−
N∑

n=1

1

�2
n

(42)

Substitution of Eq. (42) into (40) yields

∞∑
n=N+1

Q apx
n ≈ −2ı(�)

{(
1

10
−

N∑
n=1

1

�2
n

)
[1

− exp(−�2
N+1�)] +

√
�

�
erfc(�N+1

√
�)

}
(43)

Thus, the approximate truncation error becomes

eapx
N (�) = −2ı(�)

{(
1

10
−

N∑
n=1

1

�2
n

)
[1 − exp(−�2

N+1�)]
+
√

�

�
erfc(�N+1

√
�)

}
(44)
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node points. If the number of node points is reduced to 100, the FD
solution 2 shows poor accuracy. The FD solution 1 deviates slightly
from the reformulated eigenfunction solution around the initial
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sing Eq. (44) to approximate the truncation error in Eq. (23), we
btain our approximate solution for the surface concentration:

apx
s (�) = C(�) +

N∑
n=1

Qn(�) − 2ı(�)

{(
1

10
−

N∑
n=1

1

�2
n

)
[1

− exp(−�2
N+1�)] +

√
�

�
erfc(�N+1

√
�)

}
(45)

hen ı(�) is a constant, Eq. (45) becomes

apx
s (�) = C0 − 3ı� − 2ı

{(
1

10
−

N∑
n=1

1

�2
n

)
[1 − exp(−�2

N+1�)]

+
√

�

�
erfc(�N+1

√
�)

}
−

N∑
n=1

2ı

�2
n

[1 − exp(−�2
n�)] (46)

hen ı(�) = − sin(�) Eq. (45) becomes

apx
s (�) = C0 − 3[cos(�) − 1] + 2 sin(�)

{(
1

10
−

N∑
n=1

1

�2
n

)
[1

− exp(−�2
N+1�)] +

√
�

�
erfc(�N+1

√
�)

}

+
N∑

n=1

[
2e−�2

n� − 2 cos(�) + 2�2
n sin(�)

�4
n + 1

]
(47)

q. (45) is our approximate solution for the dimensionless surface
oncentration as a function of time. It will be shown below that our
pproximate solution provides an accurate value for the surface
oncentration with only a few terms (N = 5, e.g.) in the series in Eq.
45) in comparison to the truncated solution (Eq. (23)) with a large
umber of terms. It is also shown that our approximate solution
ith only a few terms agrees well with numerical solutions for

oth constant boundary flux and time-dependent boundary flux
xpressions.

. Results and discussion

Our approximate solution for the surface concentration, Capx
s (�),

an be obtained in analytic form when ı is a constant or a simple
unction of dimensionless time or by numerically solving N + 1 ODEs
one for C and N for Q1 through QN). The simulations presented
elow were based on the discharge of the positive electrode in a

ithium ion pouch cell (the design parameters for this type of cell are
vailable in Ref. [8] and listed in Table 1). Where the dimensionless
ux equivalent to 1 C rate is calculates as

1C = I1 CRp

DFSpcmax
= 0.200452 (48)

he initial condition is C0 = 0.5 and the simulation stops when Cs

eaches 0.95.

.1. Comparisons with truncated solutions

Comparisons between our approximate solution and the trun-
ated solutions are presented in Fig. 1. In this case, the boundary

ux ı = − 20 is equivalent to 100 C rate. As shown in Fig. 1, with only

 terms, our approximate solution provides the same accuracy as
he truncated solution with 5000 terms. Note that the 300 term
runcated solution is not accurate.
Fig. 1. The comparison between the reformulated eigenfunction solution and trun-
cated solutions.

3.2. Comparisons with numerical solutions

To compare our approximate solution to numerical solutions,
two commonly used numerical approaches were used: the finite
difference (FD) method and the orthogonal collocation on finite
element (OCFE) method. As shown in Fig. 2(a), the five-term
approximate solution agrees well with FD solution 1 with 2000
0.00010 0.00040.00030.0002τ

Fig. 2. The comparison between the reformulated eigenfunction solution and (a) FD
solutions, (b) OCFE solutions.
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Table 1
The design parameters for positive electrode of MSA  pouch cell.

Symbol Description Value Unit

I1C 1 C rate current 1.656 A
Da Diffusion coefficient in the particle 1.213 × 10−14 m2 s−1

Sp Total electroactive surface area of positive electrode 1.167 m2

cmax Maximum concentration in particle 51,410 mol  m−3

F Faraday’s constant 96,487 C mol−1

Rp radius of particle 

a Evaluated at 30 ◦C using Arrhenius’s correlation with activation energy of 29 kJ mol−1
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case studies, the OCFE solution with 50 elements and 2 inte-
rior points is used to validate the accuracy of our approximate
solution.
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1

ig. 3. The surface concentration with periodic boundary flux (a) low frequency, (b)
igh frequency.

ime � = 0, even though these two solutions agree perfectly with
ach other over the most of the time range. In FD solution 1, the
alculated initial value is Cs = 0.5067 at � = 0, which is not consis-
ent with the set value 0.5. The reason is that, in the FD method, the
ependent variables at the two boundary points are determined
y algebraic equations, and the error is caused in the initialization
f DAE system. For our approximate solution, all dependent vari-

bles are determined by ODEs and no initialization is needed, so
he solution can start exactly at the set value.

Fig. 2(b) presents a comparison between our approximate
olution and the OCFE solutions with different settings. As

able 2
he simulation time for different approaches.

Approach Solution time (s)

Approximate solution (N = 5) (Eq. (45)) 0.015
FD solution 1 (2000 points) 4.98
OCFE solution 1 (50 elements and interior points) 0.391
OCFE solution 3 (100 elements and interior point) 0.406
8.5 × 10−6 m

.

shown in the figure, the five-term approximate solution agrees
with the OCFE solutions 1 and 3 in which finer element
mesh size is applied and more equations are included to
ensure sufficient accuracy. The OCFE solutions 2 and 4 with
larger element mesh size and less equations have significant
error. In OCFE method, all equations are ODEs and no ini-
tialization is involved, so consistent initial conditions can be
obtained.

The solution times for different approaches are listed in Table 2.
The reformulated eigenfunction solution is much faster than the
other numerical solutions with the same level of accuracy. Being
time-efficient is a great advantage for the reformulated solution
over the numerical solutions. It’s also found in Table 2, the OCFE
method is faster than the FD method, and furthermore, there
is no initial error for OCFE method; therefore in the following
0.5

0.55

0.6

0.65

0.7

0.75

0.050.040.030.020.010 0.10.090.080.070.06
τ

C s

Approximate  Solution  (N =9)
Approxiamte  Solution  (N =5)
OCFE  Solu tion  (50  Elements,  2 Interio r Points )

Fig. 4. The comparison between the reformulated eigenfunction solution and short-
time analytic solution (a) large boundary flux, (b) small boundary flux.



M. Guo, R.E. White / Journal of Power

F

3

a
o

C

t
A
t
c
a
c
s
t
t
c

s
t
b

∂� r2 ∂r ∂r
ig. 5. The simulated (a) 2 C and (b) 20 C discharge profiles using pseudo-2D model.

.3. Comparisons with the short-time analytic solutions

Using the method described by Atlung, et al. [9] if the bound-
ry flux ı is constant, a short-time analytic solution for Cs can be
btained (see Appendix A) as follows:

s(�) = C0 − ı[1 − e� erfc(−√
�)] (49)

Fig. 3(a) shows a comparison between our approximate solu-
ion and the short-time solution with a large boundary flux ı = − 20.
ccording to this figure, the predictions from our approximate solu-

ion, the short-time analytic solution, and the OCFE solution are
onsistent. Fig. 3(b) presents the comparison with small bound-
ry flux ı = − 0.2, which corresponds to a 1 C discharge rate. In this
ase, since it takes longer time for Cs to charge from 0.5 to 0.95, the
hort-time analytic solution loses its accuracy and deviates from
he other two curves at the final stage, but our approximate solu-
ion still agrees well with the OCFE solution (which can be safely
onsidered as accurate) over the entire time range.

The above comparisons show that the use short-time analytic

olution is only valid over a small time range. Another limitation for
he short-time analytic solution is that it only works for a constant
oundary flux. Therefore, our approximate solution is more useful.
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3.4. With time-dependent boundary flux

In this paper, two time-dependent boundary flux con-
ditions are considered: ı(�) = − [1 + sin(100�)] and ı(�) =
− [1 + sin(1000�)]. The results are presented in Fig. 4(a) and (b).
In Fig. 4(a), at a lower frequency, the five-term eigenfunction
solution shows good accuracy as validated by the OCFE solution. In
Fig. 3(b), however, the five-term eigenfunction solution becomes
less accurate when the frequency is increased to 1000, and nine
eigenfunction terms are needed for this case (N = 9). The reason
for the additional terms can be explained by considering Eq. (27).
Since the time-derivative of the boundary flux (dı/d�) increases
with frequency, a larger �n is required to keep the right hand side
of Eq. (27) small enough; and, therefore, more eigenfunctions are
needed in the series.

3.5. Application in porous electrode model

Our approximate solution can also be used to simply the porous
electrode model (the Pseudo-2D model) [1,2]. The 2 C and 20 C
discharge profiles simulated by pseudo-2D model with different
solution approaches for the solid-phase diffusion equations are pre-
sented in Fig. 5(a) and (b), and in each plot, the OCFE solution with
50 elements and 1 interior point is used as the complete solution.
As shown in Fig. 5(a), at the 2 C rate, both the 1-term approximate
solution and the 5-element OCFE solution agree with the complete
solution but the 50-term truncate solution loses accuracy at the
end of discharge. As shown in Fig. 5(b), when the discharge rate
increases to 20 C, the 1-term approximate solution still shows good
accuracy but the 5-element OCFE solution and the 50-term truncate
solution deviate significantly from the complete solution.

4. Conclusion

An approximate solution is presented for the surface concen-
tration in a spherical particle with a constant or a time-dependent
flux boundary condition at the surface. Our approximate solution
for the surface concentration (Eq. (45)) applies for various bound-
ary conditions: large constant flux for short time, small constant
flux for long time, low frequency periodic boundary flux, and high
frequency periodic boundary flux. This approximate solution has
proven to be advantageous over the commonly used solutions:

1) It contains much fewer terms than the truncate solution as the
truncation error is effectively approximated.

2) It shows the same level of accuracy with numerical solutions
including large numbers of node points or mesh elements, but
is much faster.

3) It shows much better long-time accuracy than the short-time
analytical solution.

4) This approximate solution also works for the porous-electrode
model in which the particle surface flux is dynamic.

Therefore, this approximate solution method greatly improves
the simulation efficiency and accuracy of physics-based Li-ion cell
models.

Appendix A. The short-time solution for particle diffusion

Dimensionless governing equation for solid-phase diffusion:

∂C = 1 ∂
(

r2 ∂C
)

(A-1)
Initial condition:

C(� = 0) = C0 (A-2)
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Boundary conditions:

∂C

∂r

∣∣∣∣
r=0

= 0 (A-3)

−∂C

∂r

∣∣∣∣
r=1

= ı (A-4)

Taking Laplace-transformation C(�, r) → u(s, r) for governing
quation

u − C0 = 1

r2

∂

∂r

(
r2 ∂u

∂r

)
(A-5)

Solving Eq. (A-5) to obtain

 = C2
sinh(

√
sr)

r
+ C1

cosh(
√

sr)
r

+ C0

s
(A-6)

here C1 and C2 are integral constants to be determined by bound-
ry conditions.

As u cannot be infinitely large at r = 0, according to Eq. (A-6)

1 = 0 (A-7)

nd

 = C2
sinh(

√
sr)

r
+ C0

s
(A-8)

Applying boundary condition at x = 1

∂C

∂r

∣∣∣∣
r=1

= −C2 sinh(
√

s) + C2
√

s cosh(
√

s)
= −ı

s
⇒ C2 = ı

s
[
sinh(

√
s) − √

s cosh(
√

s)
] (A-9)

nd
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u = sinh(
√

sr)ı

rs
[
sinh(

√
s) − √

s cosh(
√

s)
] + C0

s
(A-10)

According to Eq. (A-10),  the surface concentration at r = 1 can
be rewritten as

us = ı

s
√

s coth(
√

s) − s
+ C0

s
(A-11)

As s→ ∞,  coth(
√

s) → 1, and

us = ı

s
√

s − s
+ C0

s
(A-12)

Take inverse Laplace transformation us(s) → Cs(�) for Eq. (A-12)
and obtain

Cs = C0 − ı[1 − e�erfc(−√
�)] (A-13)
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